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Abstract: 
 
1. Preliminary remarks. Steel-rubber conveyor belt (SRB) is a composite structure containing 

the steel cord - rubber core, outside rubber facings and rubber ledges. Axial tensile load upon the belt 
is taken up mostly by steel cord component of the core. Rubber facings protect the core from 
corrosion, abrasion and impacts by transported load. In regulative documents the conveyor belt 
strength concept is identified with load level relating to inadmissible operation. According to standard 
[1], theoretic axial cord belt strength is determined as 

 
c rP P n K= ⋅ ⋅ .                                                                          (1) 

 
Here rP   is axial break force of one steel rope, n  - is a number of ropes in the cord, K  - is a 
coefficient of load irregularity between cord ropes assumed equal to 0,9. The appropriate conveyor 
belt is selected by condition  

 
c max s dP T K K≥  ,                                                                      (2) 

 
where maxT  is the maximum traction force of the belt, sK  and dK   are correspondingly coefficients of 
belt strength safety and relative overload during start-up and braking [2].  

 
The weakest places of SRB are splices. The standard requires the break strength of splice to 

be 70% at least with respect to minimum belt strength.  
 
Checking the technical state of SRB is being done both visually and by using instrumental 

means. Flaw detectors INTROKON, developed and produced by the company “Intron Plus” (Russia, 
Moscow) fix the breaks of steel ropes and decrease of their metallic cross-section relative to nominal 
value due to corrosion. The analysis of charts gives two numerical indices of belt deterioration: 
number of steel ropes breaks and value of metallic cord cross-section loss. Rope breaks spacing chart 
and cord section loss chart are compared with normative values that are accepted in technical 
documentation [3]. Decision about fitness (or unfitness) of the belt or about its service life time is made 
by experts’ opinion. Expert estimates are based upon empirical criteria of belt’s limit state which are 
exclusively qualitative. These criteria contain no strength parameters. Some working manuals and 
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instructions for charts decoding make efforts to refine qualitative information of the belt state by 
introducing correction factors for estimate (1): 

 
c r r( ) .P P n n K= ⋅ − ⋅                                                               (3)

For example, in case of central rope breaks numbering r 6n ≥ coefficient K  is assumed to be 
0,4 and in case of similar number of breaks at belt edge 0, 2K = . Argues for these very values have 
no grounds. So, detailed analysis of strength of belt having broken and/or corrosion-struck cord ropes 
is actual [4-7]. Expert estimates must take into account results of strength analysis that can specify the 
dependence of belt endurance on distribution of defects across the width and along the length of 
checked section. Objective of this work is the development of theoretical model that allows 1) to 
analyze the influence of cord damages upon the belt strength and 2) to estimate residual endurance of 
particular belt passed the technical diagnostics. 

 
2. Mechanical model and algorithm of SRB strength estimation. Consider a regular 

working specimen of belt located far from the splices. Belt cross-section B h×  with cord ropes step b  
is shown at Fig. 1. 

 

 
 If the belt is not defected, relative deformation 0ε  appeared in each rope by uniform tension P  
is determined as 
 

( )0
0 rub rub 0

ε ,
1 /
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nEF E F nEF
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                                                                  (4) 

 
where 0EF  is tensile rigidity of one rope cross-section, rub rubE F  is tensile rigidity of belt rubber 
component. Complete force cP  in the cord is equal to c 0 0P n EF= ε . Absolute axial extension u∗  of the 
belt with length l  is equal to * 0u l= ε .  
  

Steel ropes breaks and cross-section losses change the uniform deformation of the cord. The 
problem appears to determine stress-strain state of individual ropes and to estimate the residual 
service life of defected belt. The interactive force between the adjacent ropes due to deformation of 
rubber appears. This force is proportional to shear rigidity  c  of rubber layer and relative ropes 
displacement i.e. ( )1k kc u u −− . Assuming that there is no sliding between rubber layer and ropes along 
contact surfaces the equilibrium equation for k −  rope can be written as 

 

( )
2

1 12 2 0.k
k k k k

d u
EF c u u u

dx − +− − + − =                                                       (5) 

 
Here kEF  is tensile rigidity of k −  rope with eventual cross-section loss. Parameter c , characterizing 
the shear of inter rope-rubber layer can be estimated by following view. If cross-section of inter rope 
layer is considered as rectangular h b×  and layer strained state is assumed to be “net sheared”, then 

rub /c G b h= , where rubG  is a shear modulus of the rubber.  
With non-dimensional parameters  

 
2 2 2

0 0 0 0 rub 0ξ / , / , η / , / , / ηk k k kx F u u F F F G b Eh= = = α = α = α%                    (6) 
 
the equation (5) can be rewritten as 
 

2
2

1 12 ( 2 ) 0k
k k k k

d u
u u u

dx − +−α − + − =
%

% % % .                                                           (7) 

Fig. 1 

B 

h 

b 



 

Introducing the vector 1 2 1 2[ ; ; ; ; ; ; ; ]T
n nu u u= ε ε εy % % %K K equation (7) can be presented in normal Cauchy 

form 
′ =y Ay .                                                                                        (8) 

Matrix A  has the following structure  

0

,
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0 E
A

A 0
 

where 0  is null-matrix, E is identity n n×  matrix, 0 −A is three-diagonal n n×  matrix. If the metallic 
cross-section loss occurs each k − row of matrix 0A  should be divided by coefficient kη . Cauchy 
problem (8) solution with initial conditions 0y  is given in matrix form 
 
( ) 0

ξξ = Ay e y              .                                                             (9) 
 
Concentration of tensions in ropes adjacent to the broken rope will differ essentially from 

nominal values. Setting the boundary problem relative to displacements ku  we take the scheme of 
“tough loading” of the belt. The left end of belt specimen under consideration is fixed and all the ropes 
at right end get identical displacements * 0u l= ε  (see fig. 2). 

 

 
  

Total force in cord ropes of non-defected belt under “tough loading” is equal to cP . In similar 

case for defected belt the total cord force will be c
1

n

j j
j

P EF∗
=

= ε∑ . For limit state strength analysis 

percent decrease of endurance ψ  of defected belt can be estimated as follows: 
 

( )c c1 / 100%P P∗ψ = − ⋅ .                                                              (10) 
  

If strength analysis is performed by admissible tensions with “bar approach”, then to determine 
the safety factor it is necessary to know the stress concentration coefficient sk . It may be written in 
form 

nommax /s kk E= ⋅ ε σ .                                                                 (11) 
 
Here E  is an axial modulus of elasticity of cord ropes, nomσ  is a nominal tension determined for the 
section of rope in which maximum value of relative deformation is occurred, i.e. 

r

nom c
1

/
n n

k
k

P F
−

∗
=

σ = ∑ ,                                                                 (12) 

where rn  is a number of broken ropes at belt section in question. Calculation of sk  value should be 
done for each belt section where rope breaks are available. 
  

To make a numerical scheme the belt section with defects is divided into subsections 
according to location of defects (Fig. 2). At subsection boundaries one or several rope breaks could be 
situated. To the left and to the right from defects group two segments λ  are added. The value of λ  
can be chosen from the “boundary effect” point of view (for example, 2 /λ ≈ π α ). This is necessary for 
decreasing the influence of boundary conditions upon distribution of tensions and deformations within 

*u  
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belt specimen with rope breaks. The boundary conditions are: at 0x =   all 0ku =  and at x l=  all 

*ku u= . Displacements and strains at subsections boundaries will be characterized by vector ky . 
 
The calculations are performed by transitional matrices method, according to which the vector 

ky  at the end of k −  subspecimen is determined using transitional matrix kB  by formula 1k k k−=y B y . 
Matrices kB  are calculated by formulae ( )expk k= ξB A . Value of vector 1k+y  in 1k + − section is 

1 1 1 1k k k k k k+ + + −= =y B y B B y  etc. Besides, jumps must be taken into account for those components of 
vectors ky  that correspond to broken ropes in section k.  

 
For determination of stress-strain state in ropes at belt subsections it is necessary to evaluate 

2n m+  components ( ), 1, 2, 2jX j n m= +K  of unknown vector X . Here m  is the number of rope breaks 
at belt specimen under consideration. Relative deformations (strains) kε  are assumed as the first n  
unknown quantities at left belt edge. Next m  unknown quantities are the jumps of displacements in 
broken ropes. And other n  unknown quantities are relative deformations in utmost right section of the 
belt. Equations for determining the unknown quantities kX  are composed according to the transitional 
matrices algorithm. First 2n  equations are based upon the relation 

1 1 0
1

s

s s k
k

+ − +
=

=∏y B y .                                                                     (13) 

Here  s is a number of sections of the belt where one or several rope breaks are available. The rest of 
m  of equations are derived from conditions  
 

( ) 0k jε ξ = ,                                                                      (14) 
 
where k  is a rope number, jξ  is a coordinate of rope break. After determination of vector X , 
displacements and relative deformations in all ropes can be calculated for any coordinate ξ .  

 
The computer program was developed for calculation of stress-strain state at SRB defective 

specimen. 
 
3. Results and discussion. Some results for belt with cord ropes number 50n =  and 

parameters 2
0 0,01α = , 0 0,0001ε =  for the case of breaks at one section are presented at table 1 and 

in fig. 3, fig. 4. 
 
 

Table 1 
 Breaks at one edge  Breaks in the middle  
Number of 
broken 
ropes 

Percent of tensile 
force decrease 

Stress 
concentration 
coefficient 

 Percent of tensile 
force decrease 

Stress concentration 
coefficient  

1 0,5 1,54  0,3 1,30 
2 1,5 1,84  0,9 1,51 
3 2,8 2,01  1,8 1,67 
4 4,5 2,11  2,9 1,79 
5 6,3 2,16  4,2 1,88 
6 8,2 2,19  5,7 1,94 
7 10,1 2,20  7,3 1,99 
8 12,1 2,21  9,0 2,02 
9 14,1 2.21  10,8 2,05 
10 16,1 2,21  12,6 2,06 
 
 

At Table 1 the results for changing of tensile force and stress concentration coefficient are 
presented for rope breaks numbering from one to ten for two cases. In first the breaks take place at 
belt edge, in second one – at the middle. The breaks at the edge are more dangerous then those in 
the middle.  With increase of number of adjacent broken ropes stabilization of stress concentration 



 

coefficients may be observed. Distributions of deformations related to value 0ε  in case of ten rope 
breaks are shown in Fig. 3 and in Fig. 4. Circle markers correspond to the section with rope breaks 
and stars markers – to utmost section of belt specimen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         Fig. 3.            Fig.4. 
 
It is evident from the diagrams that rope break mostly effects upon adjacent rope where 

relative deformation and consequently the tensions may be near 1,5 2,5÷  times higher than their 
nominal values. It should be noted that effect of rope break spreads only to five nearby ropes. This 
event depends essentially upon rigidity of rubber inter-ropes layers. Irregularity of strains distribution 
decreases with decreasing of rubber rigidity. 

 
Changing of displacements ku  and relative deformations kε  with longitudinal coordinate ξ  for 

first ten ropes in case of breaking five edge ropes is illustrated it Fir. 5 and  in Fig. 6. 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 

Fig. 5.       Fig. 6. 
 

Results in Fig. 7 are related to the break of also five ropes but when rope breaks are located in 
different belt sections. In the first section ropes 1 and 3 are broken. In the second, with coordinate 
ξ =10, ropes 2 and 4 are broken. In the third section with coordinate ξ =20 rope 5 is broken. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Fig. 7.  
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Percentage decrease of tensile force in this case was just 1,6% instead of 6,3% in the case 

when rope breaks take place in one belt section (see Table 1). Stress concentration coefficient sk  
proved to be the least sensible towards considered location of defects being sk =1,66 instead of 

sk =2,16 (the last corresponds to the case of rope break in one section). 
 
The model allows reviewing the problem of limit state of SRB. Consider the case when the 

ropes are broken in turn one by one from one side with total number of cord ropes 50n = . Let *ε be 
the limit relative deformation of broken rope. Assume that with *ε < ε  linear-elastic dependence 
between forces and displacements is maintained and remind that for undamaged belt destructive force 

c 0 *P nEF∗ = ε . Considering that there is no interaction between ropes due to rubber we get a simple 
formula giving the value of limit load for the belt with k  broken ropes - ( )c , 0 *kP n k EF∗ = − ε . In 
coordinates c , /k cP P∗ ∗  − k  at Fig. 8 linear dependence represented by dashed line corresponds to 
decrease of destructive force. But in case of first rope break due to concentration of tensions the 
destructive force will be determined by reaching the limit relative deformation *ε  in second rope while 
in other ropes it can be much less. At values more than 10k =  due to stabilization of stress 
concentration coefficient (see Table 1) the dependence ( )cP k∗  becomes practically linear. But 
ordinates of this dependence are approximately 2,2 times less that corresponding ordinates in case 
when concentration of tensions is neglected. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Fig. 8.                                                                  Fig. 9. 
 
 

Concentration of tensions determines also the value of destructive displacement of utmost 
sections of belt specimens. If for undamaged belt it is equal to * *u l= ε  in case of rope breaks 
dependence ( )*ku k , presented in Fig. 9 abruptly decreases at initial and end specimens. In wide 
range of values of k  it is practically constant and is approximately 2,7 times less than *u . 
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